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Introduction
We have the LMMs why bother with shortrate models anyway?

¢ looking for a slim alternative to LMM
e try to capture as many features as possible with only few state variables
o few state variables will be faster in MC simulation

e few state variables will provide chance for PDE solution

Sogiveitatry...



HIM (1)

df (t,T) = o4(t,T) (/T ot s)ds> dt + o (t, T)dW (¢)

setting
of(t,T) = h(t)g(T)
and integrating yields

= @ x L : s)ds
FT) = 0.0+ 2 ( O+t [ o >d>
with
dx(t) = (‘(Z/((;)):E(t) + y(t)) dt + g(t)h(t)dW (t)
_ 2 2 gl(t)
dy(t) = (g om0 + 2% y<t>) it
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HIM (11)

dx(t) = (g/((;;x(t) + y(t)) dt + g(t)h(t)dW (t)
o 2 2 9/(75)
i) = (om0 + 22 o)) ae
with
gt)
O
gn(t) = n(tz(t),y(t)
YIRS gty = (y(t) — k()a(t))dt + n (t, 2, (), y(£) W (£)



Cheyette 1f (1)
See e.g. [1],

Zero Coupon Bond:
P(t,T;x(t),y(t) =

T
G(t,T) = / e~ Ji k($)ds gy — %(1—€_k(T_t))
¢

For any choice of (¢, z(t), y(t))!
So, what is the best choice of n(¢, z(t), y())?
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Cheyette 1f (I

Displaced diffusion (DD)
n(t,z) = (mr(z,t)+(1—m)L)o(t)
n(t,z,y) = (mSyn(z,y,t)+ (1 —m)L)o(t)

Constant Elasticity of Variance (CEV)
n(t,z) =r(z,t)% () ; nt z) =Sz y,t)%(l)
DD with stochastic volatility (SV)

n(t,z) = (m r(t) + (1 — m)L) V(t)o(t)
AV = pA-=V({))dt+/V(t)edWy ; V(0) =1
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Cheyette 1f (1I1)

Displaced Diffusion: n(t,z) = (mr(t) + (1 — m)L)o(t)
with m =0

n(t,z) = (W(t)+( m)L)a(t) = Lo(t)
dx(t) = (y(t) — kx(t))dt + Lo(t)dW (t)
dy(t) = (L?0>(t) —2ky(t))dt

yields extended Vasicek model

t
y(t) _ 6—2ktL2/ 0_2(8)6—2ksd8
0

dz(t) = (y(t) — ka(t))dt + Lo(t)dW (t)
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Cheyette 1f (1V)

Displaced Diffusion: n(t,z) = (mr(t) + (1 — m)L)o(t)
withm =1

aat) = (mr(t) +(1—m)L)o(t) = r(z,)o(t)
dr(t) = (y(t) — ka(t))dt +n(z, )W (1)
dy(t) = (P(a.t) — 2ky(t))dt = (22(D)0>(t) — 2hy(1)) dt

we get a kind of lognormal model

de(t) = (y(t) — kx(t))dt + r(x, t)o(t)dW (t)

dy(t) = (n°(z,t) — 2ky(t))dt = (o*(t)x”(t) — 2ky(t))dt
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Intermediate Summary (1)

What do we have?

e shortrate model with only few state variables
e variable volatility specification (including stochastic volatility)

e analytic function for zero coupon bond: P (¢, T, z(t),y(t))

What do we need?

e fast calculation of instruments to calibrate to (e.g. swaptions)
e simulation of process

e scheme for PDE solving
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Cheyette 1f Swaptions (I)

Displaced Diffusion:
0t x) = (mr(t) + (1 —m)L)o()

Swaption in swap-measure (annuity measure) [3]: S,y (t) = Zldn)=L(:1y)

SO i P(tt))
 8S.n.,  0S.n
ASan = —dr = =t (mr(t)—l—(l m)L)a(t)dW
0S,n (mr(t)+ (1 —m)L) ]

Oxr (mSpn(t)+ (1 —m)L)
dS,n ~ (mSnN + (1 — m)L))\(t)dW

Q

(man (11— m)L)a(t)dW

r=y=0

Displaced Diffusion (lognormal in S):

SWP = PVuE[(S—K)t] =

with S = mS+(1-m)L ; K=mK+(1-m)L
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Cheyette 1f Swaptions (II)

Comments on approximation [3]:

P(t, tn) — P(t, tN)
SN P(t, t;)

D(T)

Spn(t) = D(t)

) P(t7T) -

exp (—G(t, T)x + %GQ(t, T)y>

Errors in approximation

oS

95| _ . removes variance
Ox lx=y=0

o freezing 22 ~ |

e since E [25] £ E [[g—i] x:y:O} expectation is biased

The above effects are small and partially offsetting.
(Unfortunately true only for m = 0.)

e no drift correction for x(t) in annuity meassure
= residual skew and biased expectation
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Cheyette 1f Swaptions (V)
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Impl.vol.
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Cheyette 1f stochastic volatility (SV)

SDE (see e.g. [2]):

dr(t) = (y(t) — ka(t))dt + n(x, t)/V (L) dW,(t)
dy(t) = (n’(z,t) —Qky( ))dt

n(x,t) = (m@)z(t)+ (1 —m(t))L)o(t)
av(t) = p1-V(t )dt+e () V () dWy(t)

dW,dWy = 0

e Zero Coupon Bond: like in Cheyette without SV
(Unspanned Stochastic Volatility) Zero Coupon Bond:

Pt,T,x,y) = l]))((f)) exp (—G(t,T)a:(t) + %Gz(t, T)y(t))
G(t,T) = % (1 — e_k(T_t))
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Cheyette 1f SV Swaption (1)

Start with time constant displacement (m):
n(z,t) = (mr(t)+(1—m)L)o(t)
dV(t) = B(1—=V(t))dt+ e(t)\/V(t)dWy(t

e change of measure into swap-measure (like in non-SV case)

e due to O-correlation between dW, and dWy, no change of drift in dV

Swaption in swap-measure (annuity measure) plus approximations:

dS,n = (man T (1— m)L))\(t)\/V(t)dW
dV(t) = B —V({)dt+ e/ V(t)dWy (1)

e well known Heston SDE (+ Displaced Diffusion)
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Cheyette 1f SV Swaption (II)

dS,n = (mSnNJr(l—mL))\t\/thW
dV(t) = B(1—V(®))dt+et)/V(E)dWy(t

e - k] -

with S = mS+(1—-m)L ; K=mK+(1-m)L

@)
i

SWP = PVuE|[(S—K)'| =

(5, K)

The Heston part can be solved by

e fundamental transform (see below)

e Volatility expansion
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Cheyette 1f SV Swaption (Il

~ 500
_ _ _ K 1k +OO —Ww In K
Heston(S, K) = S(0) + 2—% / e . c(0,w)+b(0,w) 7
v W — W

€

30) 5(0)
k;=0.5 / \/ COS —kln ) a(0,k+0.51)+b(0,k+0.57) 71

k2 4+ 0.25
W~ @ aTw) =0
dt = , a W) =
db ]‘2 2 1 2 21.2
- — SC —\°(t k b(T =
= Bb — SO + N (OmAK  b(T,w) =0

Riccati ordinary differential equation has
e analytical solution for ¢ and \ constant,

e piecewise analytical solution for e and A piecewise constant and

e numerical solution for €(¢) and \(¢) (which is slower)

Unfortunately \(¢) is not piecewise constant; (whereas o (t) is)
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Cheyette 1f SV Swaption (1V)

e can solve model with A\(¢) and ¢(¢) and m

e cannot use lognormal property of Displaced Diffusion anymore when m
becomes m(t)

dS,n = (m(t)SnN+(1— ) \/ dWS
V() = B(1—V(t))dt+e(t) \/ )Wy

e find time averaged variables to approximate dynamics:
m for solvebility ; \ and € for speed up

dS,ny = (MSun + (1 —m)L)A/V (t)dWg

dV(t) = B —V()dt+e/V(E)dWy

17/33]



Cheyette 1f SV Swaption (V)

Average volatility of variance € (V.Piterbarg[5]):

Equate variance of realized volatility

T 2

E[(/OT A?(t)V(t)dt)Z} :E[(/O )\2(t)V(t)dt> ]

o I E(tyw(t)dt
ol w(t)dt

yielding

with
T T
w(t):/ / AZ(W)A2(s5)eP(u=)e2B =) gy ds
t s

18133



impl.vol[%]

18

16

14

12

Cheyette 1f SV Swaption (VI)
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Cheyette 1f SV Swaption (VII)

Effective skew parameter m (V.Piterbarg[5]):
dSpn = n(SE),t) A(t)\/V(£)dWg with 7 (S(t),t) = m(t)Spn + (1 — m(t))L

dAV(t) = B(1— V() dt+e(t)\/V(t)dWy

V.P. shows that

T
. w(t)n(S(t), t)A*(t)dt 2
7*(S(t)) = Jo = with  w(t) :E[V(t)(S(t) — 5(0)) }
Jo w(®)N2(t)dt
minimizes the difference of the second and third moment between the time

averaged and timedependent SDE.

For the given n (S(t),t) this yields

oy m@u®N @t e [TN) asaeyg
— fOTw(t))\Z(t)dt with (t)_/o A°(s)ds+ /O 25 ( )d
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impl.vol[%]

Cheyette 1f SV Swaption (VIII)

© - g swaption (20y into 10y)
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Cheyette 1f SV Swaption (1X)
Effective volatility \ (V.Piterbarg[5]):

step 1. Black-Scholes ATM-Swaption formula as function of variance

o) = 2% (2N (Gmya) - 1)

m

IS approximated with
g(xr) = a+ be™ “*.
by setting
9(&) =3(&) ; ¢'(§) =g'(&) and g"(§) = 3"(§)

step 2. Equate expectations for time dependent and time averaged A
T . B T
E[@(/O NOVE)| = E[?/(AQ/O V()

0+ bE[eme i YOV — g g pp[em e Vo]
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Cheyette 1f SV Swaption (X)

still step 2: ot bE e 0vma _ R [6_6;2 A V(t)dt}

B 'e—cfoT MOV ()dt] E[e_c;@ s V(t)dt}

6A(0,T)+B(0,T_) o A0, T)+B(0,T)

a() and a() follow Riccati ODE. For a() and a() anayltic solutions exist.

e time dependent part: once solve for a() and b() numerically

e time independent part: solve for A numerically (cheap since analytical solutions
to a() and b() exist
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Cheyette 1f SV Swaption (XI)

Some empirical observations for swaptions in the Euro market in June:

e the skew parameter m tends to be well below 1 and not strongly varying

e the smile parameter ¢ is constant around 50% for larger ¢,
a bit larger (60%) at small ¢ (¢ < 2years)

e the volatiliy o(t) is about 18% and not strongly fluctuating
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Cheyette 1f SV Swaption (Xlla)

market (10y into 10y)
approximation

° simulation
simulation tuned
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impl.vol.diff.[%]
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Cheyette 1f SV Swaption (XIIb)

diff to market (10y into 10y)
diff to approximation
diff to simulation

diff to tuned simulation /
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Intermediate Summary (1)

e by

— transformation into swap measure
: ds ds r
— freezing of =2ly(r) ~ { dgNn&(nz)v)} n(SpN)

r=y=0

— using fact that displaced diffusion leads to lognormal distribution in substitute
variable
— time averaging of o(t), A(¢) and €(t)

we get more (m small) or less (m large) accurate numerical solution

e can (largely) remove residual skew of approximation by correting for deviation
between approximation and simulation once (denoted by tuned simulation)

e hence we are prepared for calibration of the model
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Calibration to Swaptions

minimize sum of weighted squared relative deviations of model price from
market price

global: for all model parameters at once : slow and unstable

stepwise: assume knowledge of time independent parameters k£ and g;
fit time dependent parameters m(t), o(t) and e(t) for subsequent swaption
expiries

iterative: optimize time independent parameters combined with a stepwise
calibration for each valuation of the cost function

depending of the number of factors, time intervals and market quotes this takes
from fractions of a second to several minutes

for very accurate calibration one intermediate simulation step is helpful
(removing residual skew in swaption price approximation for m > 0)
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Simulation of Variance Process (CIR)

V() = B(1-V@)dt+e/V(Et)dWy(t) V(0)=1
Vt+At) = V() +B(1-V(t)At+e/V(H)VALZ

e process itself cannot yield V(t) < 0
e for large 5 and / or large ¢ : Euler discretization can yield negative V ()

— If negative, set to O : does not work at all
— 1If negative, mirror to postive value : does not work well
— sample from non-central x? [6]: works well, no antithetics
(fast implementation in GSL (not inverting distribution function))
— moment matched log-normal[7] : works well, antithetics possible

V(t+AL) = (1+(V(t) - 1)e P8)e 05002
2 B V(1) (1 — e~2PA)
['“(t) = In (1 + 251+ (V (D) 1)6—6At)2)
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PDE solution (1)

PDE for 1factor without stochastic volatility

oV
= = (Do+D, =1V

0 1 2 07
Dp = (y—ko)g+5(mr(t) = (1 —m)L) 5

D, = ((mr(t) Q1 —m)L)2 - 2]<:y) ;y

e two dimensional PDE; y-dimension is convection only!

— ADI
— Craig Sneyd (splitting scheme)
— IMEX (see below)
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PDE solution (I1)
IMEX-scheme [8]:

V(") - V()
At

— RVt -ve) ar[E (Ve Ve - v - sVt )]

1 (1 5V(aT,t)+V(z,t) —2V(t) Vet t) —V(z,t)
T3 (Eax Ax? T+ Ha 2Ax _Tv(t))

\V}

+ 4+ — 4y + T ) — Ve ¢t
1(;(;3\/@: Ve Zveh) | Ve Ve >_W(t+)>
2\ 2 Ax 2Ax

e purely explicit in y

e use upwind scheme in y, not central differences : oscillations

e use third order upwind in y to increase accuracy to O(Ay?): no penalty in
solving system of linear equations since explicit

e can get accurate solution of swaption with 15 points in y
(number of necesarry gridpoints in y depends on m; for m ~ 0 we can get away
with even less than 15)
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Multifactor

One multidimensional extension of the model is straight forward

f
dri(t) = (yij(t) — kiwi(t))dt + Z i ()dW;(t) 5 dW;dW; =0

dyij(t) — (ka(t)mk(t) — (ki + K )yw( ))dt

ij(t @i yi) = 0y(E) (m()r(t) + (1 —m(t))L)
0;;(t) = lower triangular matrix

r(t) = Zx@ + £(0,1)

e f stochastic and f% total number of state variables
e analytic formula for P(t, Z, y)

e Similar approximations for swaption
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Summary / Outlook

e \What we have:

— class of shortrate models with flexible volatility function
« flexible smile and / or skew
x stochastic volatility with corresponding dynamics

— low dimensional Markow and analytical solution for ZCB:
= relatively cheap in MC-simulation and PDE

— 1factor version is capable of reproducing the smile for one underlying
per expiry nicely (e.g coterminal swaptions); even swaptions not used in
calibration process often still ok; further improvements by multi factor version
expected

e Future plans:

— Improve swaption approximation in annuity measure for m # 0
— extensions and checks of multi factor model
— include jump diffusion
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