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Introduction

We have the LMMs why bother with shortrate models anyway?

• looking for a slim alternative to LMM

• try to capture as many features as possible with only few state variables

• few state variables will be faster in MC simulation

• few state variables will provide chance for PDE solution

So give it a try. . .



HJM (I)

df(t, T ) = σf(t, T )

(∫ T

t

σf(t, s)ds

)
dt + σf(t, T )dW (t)

setting
σf(t, T ) = h(t)g(T )

and integrating yields

f(t, T ) = f(0, t) +
g(T )
g(t)

(
x(t) + y(t)

1
g(t)

∫ T

t

g(s)ds

)

with

dx(t) =
(

g′(t)
g(t)

x(t) + y(t)
)

dt + g(t)h(t)dW (t)

dy(t) =
(

g2(t)h2(t) + 2
g′(t)
g(t)

y(t)
)

dt
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HJM (II)

dx(t) =
(

g′(t)
g(t)

x(t) + y(t)
)

dt + g(t)h(t)dW (t)

dy(t) =
(

g2(t)h2(t) + 2
g′(t)
g(t)

y(t)
)

dt

with

g′(t)
g(t)

= −k(t)

g(t)h(t) = η
(
t, x(t), y(t)

)

yields dx(t) =
(
y(t)− k(t)x(t)

)
dt + η (t, x, (t), y(t)) dW (t)

dy(t) =
(
η2 (t, x(t), y(t))− 2k(t)y(t)

)
dt
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Cheyette 1f (I)
See e.g. [1], [2]

dx(t) =
(
y(t)− k(t)x(t)

)
dt + η(t, x(t), y(t))dW (t)

dy(t) =
(
η2(t, x(t), y(t))− 2k(t)y(t)

)
dt

r(t) = x(t) + f(0, t)

Zero Coupon Bond:

P
(
t, T ;x(t), y(t)

)
=

D(T )
D(t)

exp
(
−G(t, T )x(t) +

1
2
G2(t, T )y(t)

)
G(t, T ) =

∫ T

t

e−
R u
t k(s)dsdu =

1
k

(
1− e−k(T−t)

)
For any choice of η

(
t, x(t), y(t)

)
!

So, what is the best choice of η
(
t, x(t), y(t)

)
?
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Cheyette 1f (II)

Displaced diffusion (DD)

η(t, x) =
(
m r(x, t) + (1−m)L

)
σ(t)

η(t, x, y) =
(
m SnN(x, y, t) + (1−m)L

)
σ(t)

Constant Elasticity of Variance (CEV)

η(t, x) = r(x, t)ασ(t) ; η(t, x) = SnN(x, y, t)ασ(t)

DD with stochastic volatility (SV)

η(t, x) =
(
m r(t) + (1−m)L

)√
V (t)σ(t)

dV = β(1− V (t))dt +
√

V (t)εdWV ; V (0) = 1
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Cheyette 1f (III)

Displaced Diffusion: η(t, x) =
(
m r(t) + (1−m)L

)
σ(t)

with m = 0

η(t, x) =
(
mr(t) + (1−m)L

)
σ(t) = Lσ(t)

dx(t) =
(
y(t)− kx(t)

)
dt + Lσ(t)dW (t)

dy(t) =
(
L2σ2(t)− 2ky(t)

)
dt

yields extended Vasicek model

y(t) = e−2ktL2

∫ t

0

σ2(s)e−2ksds

dx(t) =
(
y(t)− kx(t)

)
dt + Lσ(t)dW (t)
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Cheyette 1f (IV)

Displaced Diffusion: η(t, x) =
(
m r(t) + (1−m)L

)
σ(t)

with m = 1

η(x, t) =
(
mr(t) + (1−m)L

)
σ(t) = r(x, t)σ(t)

dx(t) =
(
y(t)− kx(t)

)
dt + η(x, t)dW (t)

dy(t) =
(
η2(x, t)− 2ky(t)

)
dt =

(
x2(t)σ2(t)− 2ky(t)

)
dt

we get a kind of lognormal model

dx(t) =
(
y(t)− kx(t)

)
dt + r(x, t)σ(t)dW (t)

dy(t) =
(
η2(x, t)− 2ky(t)

)
dt =

(
σ2(t)x2(t)− 2ky(t)

)
dt
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Intermediate Summary (I)

What do we have?

• shortrate model with only few state variables

• variable volatility specification (including stochastic volatility)

• analytic function for zero coupon bond: P
(
t, T, x(t), y(t)

)
What do we need?

• fast calculation of instruments to calibrate to (e.g. swaptions)

• simulation of process

• scheme for PDE solving
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Cheyette 1f Swaptions (I)
Displaced Diffusion:

η(t, x) =
(
mr(t) + (1−m)L

)
σ(t)

Swaption in swap-measure (annuity measure) [3]: SnN(t) = P (t,tn)−P (t,tN)PN
1 αiP (t,ti)

dSnN =
∂SnN

∂x
dx =

∂SnN

∂x

(
mr(t) + (1−m)L

)
σ(t)dW

≈
[
∂SnN

∂x

(mr(t) + (1−m)L)
(mSnN(t) + (1−m)L)

]
x=y=0

(
mSnN + (1−m)L

)
σ(t)dW

dSnN ≈
(
mSnN + (1−m)L

)
λ(t)dW

Displaced Diffusion (lognormal in S̃):

SWP = PV01E
[
(S −K)+

]
=

PV01

m
E
[
(S̃ − K̃)+

]
=

PV01

m
BS(S̃, K̃)

with S̃ = mS + (1−m)L ; K̃ = mK + (1−m)L
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Cheyette 1f Swaptions (II)

Comments on approximation [3]:

SnN(t) =
P (t, tn)− P (t, tN)PN

1 αiP (t, ti)
; P (t, T ) =

D(T )

D(t)
exp

„
−G(t, T )x +

1

2
G

2
(t, T )y

«

Errors in approximation

• freezing ∂S
∂x ≈

[
∂S
∂x

]
x=y=0

removes variance

• since E
[

∂S
∂x

]
6= E

[[
∂S
∂x

]
x=y=0

]
expectation is biased

The above effects are small and partially offsetting.
(Unfortunately true only for m ≈ 0.)

• no drift correction for x(t) in annuity meassure
⇒ residual skew and biased expectation
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Cheyette 1f Swaptions (III)
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Cheyette 1f Swaptions (IV)
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Cheyette 1f Swaptions (V)
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Cheyette 1f stochastic volatility (SV)

SDE (see e.g. [2]):

dx(t) =
(
y(t)− kx(t)

)
dt + η(x, t)

√
V (t)dWx(t)

dy(t) =
(
η2(x, t)− 2ky(t)

)
dt

η(x, t) =
(
m(t)x(t) + (1−m(t))L

)
σ(t)

dV (t) = β
(
1− V (t)

)
dt + ε(t)

√
V (t)dWV (t)

dWxdWV = 0

• Zero Coupon Bond: like in Cheyette without SV
(Unspanned Stochastic Volatility) Zero Coupon Bond:

P (t, T ;x, y) =
D(T )
D(t)

exp
(
−G(t, T )x(t) +

1
2
G2(t, T )y(t)

)
G(t, T ) =

1
k

(
1− e−k(T−t)

)
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Cheyette 1f SV Swaption (I)

Start with time constant displacement (m):

η(x, t) =
(
mr(t) + (1−m)L

)
σ(t)

dV (t) = β
(
1− V (t)

)
dt + ε(t)

√
V (t)dWV (t)

• change of measure into swap-measure (like in non-SV case)

• due to 0-correlation between dWx and dWV no change of drift in dV

Swaption in swap-measure (annuity measure) plus approximations:

dSnN =
(
mSnN + (1−m)L

)
λ(t)

√
V (t)dW

dV (t) = β
(
1− V (t)

)
dt + ε

√
V (t)dWV (t)

• well known Heston SDE (+ Displaced Diffusion)
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Cheyette 1f SV Swaption (II)

dSnN =
(
mSnN + (1−m)L

)
λ(t)

√
V (t)dW

dV (t) = β
(
1− V (t)

)
dt + ε(t)

√
V (t)dWV (t)

SWP = PV01E
[
(S −K)+

]
=

PV01

m
E
[
(S̃ − K̃)+

]
=

PV01

m
Heston(S̃, K̃)

with S̃ = mS + (1−m)L ; K̃ = mK + (1−m)L

The Heston part can be solved by

• fundamental transform (see below)

• volatility expansion
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Cheyette 1f SV Swaption (III)

Heston(S̃, K̃) = S̃(0) +
K̃

2π
<

∫ iki+∞

iki−∞

e
−iω ln

S̃(0)

K̃

ω2 − iω
ea(0,ω)+b(0,ω)dω


ki=0.5

= S̃(0) +
K̃

π

∫ ∞

0

√
S̃(0)

K̃
cos
(
− k ln S̃(0)

K̃

)
k2 + 0.25

ea(0,k+0.5i)+b(0,k+0.5i)dk

da

dt
= −βb ; a(T, ω) = 0

db

dt
= −βb− 1

2
ε2(t)b2 +

1
2
λ2(t)m2k2 ; b(T, ω) = 0

Riccati ordinary differential equation has
• analytical solution for ε and λ constant,

• piecewise analytical solution for ε and λ piecewise constant and

• numerical solution for ε(t) and λ(t) (which is slower)

Unfortunately λ(t) is not piecewise constant; (whereas σ(t) is)
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Cheyette 1f SV Swaption (IV)

• can solve model with λ(t) and ε(t) and m

• cannot use lognormal property of Displaced Diffusion anymore when m
becomes m(t)

dSnN =
(
m(t)SnN + (1−m(t))L

)
λ(t)

√
V (t)dWS

dV (t) = β
(
1− V (t)

)
dt + ε(t)

√
V (t)dWV

• find time averaged variables to approximate dynamics:
m̄ for solvebility ; λ̄ and ε̄ for speed up

dS̄nN =
(
m̄S̄nN + (1− m̄)L

)
λ̄
√

V (t)dWS̄

dV̄ (t) = β
(
1− V̄ (t)

)
dt + ε̄

√
V̄ (t)dWV̄

17/33



Cheyette 1f SV Swaption (V)

Average volatility of variance ε̄ (V.Piterbarg[5]):

Equate variance of realized volatility

E
[( ∫ T

0

λ2(t)V̄ (t)dt
)2]

= E
[( ∫ T

0

λ2(t)V (t)dt
)2]

yielding

ε̄2 =

∫ T

0
ε2(t)w(t)dt∫ T

0
w(t)dt

with

w(t) =
∫ T

t

∫ T

s

λ2(u)λ2(s)eβ(u−s)e2β(s−t) du ds
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Cheyette 1f SV Swaption (VI)
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Cheyette 1f SV Swaption (VII)
Effective skew parameter m̄ (V.Piterbarg[5]):

dSnN = η (S(t), t) λ(t)
q

V (t)dWS with η (S(t), t) = m(t)SnN + (1−m(t))L

dV (t) = β (1− V (t)) dt + ε(t)
q

V (t)dWV

V.P. shows that

η̄2(S(t)) =

∫ T

0
w(t)η(S(t), t)λ2(t)dt∫ T

0
w(t)λ2(t)dt

with w(t) = E
[
V (t)

(
S(t)− S(0)

)2]
minimizes the difference of the second and third moment between the time
averaged and timedependent SDE.

For the given η (S(t), t) this yields

m̄ =

∫ T

0
m(t)w(t)λ2(t)dt∫ T

0
w(t)λ2(t)dt

with w(t) =
∫ t

0

λ2(s)ds+ε̄2e−βt

∫ t

0

λ2(s)
2β

(
eβs−e−βs

)
ds
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Cheyette 1f SV Swaption (VIII)
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Cheyette 1f SV Swaption (IX)
Effective volatility λ̄ (V.Piterbarg[5]):

step 1: Black-Scholes ATM-Swaption formula as function of variance

g(x) =
SnN

m̄

(
2N(

1
2
m̄
√

x)− 1
)

is approximated with
g̃(x) = a + be−cx.

by setting
g(ξ) = g̃(ξ) ; g′(ξ) = g̃′(ξ) and g′′(ξ) = g̃′′(ξ)

step 2: Equate expectations for time dependent and time averaged λ

E
[
g̃
( ∫ T

0

λ2(t)V (t)
)]

= E
[
g̃
(
λ̄2

∫ T

0

V (t)
)]

a + bE
[
e−c

R T
0 λ2(t)V (t)dt

]
= a + bE

[
e−cλ̄2 R T

0 V (t)dt
]
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Cheyette 1f SV Swaption (X)

still step 2:
a + bE

[
e−c

R T
0 λ2(t)V (t)dt

]
= a + bE

[
e−cλ̄2 R T

0 V (t)dt
]

E
[
e−c

R T
0 λ2(t)V (t)dt

]
= E

[
e−cλ̄2 R T

0 V (t)dt
]

eA(0,T )+B(0,T ) = eĀ(0,T )+B̄(0,T )

a() and a() follow Riccati ODE. For ā() and ā() anayltic solutions exist.

• time dependent part: once solve for a() and b() numerically

• time independent part: solve for λ̄ numerically (cheap since analytical solutions
to ā() and b̄() exist
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Cheyette 1f SV Swaption (XI)

Some empirical observations for swaptions in the Euro market in June:

• the skew parameter m tends to be well below 1 and not strongly varying

• the smile parameter ε is constant around 50% for larger t,
a bit larger (60%) at small t (t < 2years)

• the volatiliy σ(t) is about 18% and not strongly fluctuating
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Cheyette 1f SV Swaption (XIIa)
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Cheyette 1f SV Swaption (XIIb)
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Intermediate Summary (II)

• by

– transformation into swap measure

– freezing of dSnN
dx η(r) ≈

[
dSnN

dx
η(r)

η(SnN)

]
x=y=0
η(SnN)

– using fact that displaced diffusion leads to lognormal distribution in substitute
variable

– time averaging of σ(t), λ(t) and ε(t)

we get more (m small) or less (m large) accurate numerical solution

• can (largely) remove residual skew of approximation by correting for deviation
between approximation and simulation once (denoted by tuned simulation)

• hence we are prepared for calibration of the model
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Calibration to Swaptions

• minimize sum of weighted squared relative deviations of model price from
market price

global: for all model parameters at once : slow and unstable
stepwise: assume knowledge of time independent parameters k and β;

fit time dependent parameters m(t), σ(t) and ε(t) for subsequent swaption
expiries

iterative: optimize time independent parameters combined with a stepwise
calibration for each valuation of the cost function

• depending of the number of factors, time intervals and market quotes this takes
from fractions of a second to several minutes

• for very accurate calibration one intermediate simulation step is helpful
(removing residual skew in swaption price approximation for m > 0)
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Simulation of Variance Process (CIR)

dV (t) = β
(
1− V (t)

)
dt + ε

√
V (t)dWV (t) V (0) = 1

V (t + ∆t) = V (t) + β
(
1− V (t)

)
∆t + ε

√
V (t)

√
∆tZ

• process itself cannot yield V (t) < 0

• for large β and / or large ε : Euler discretization can yield negative V (t)

– if negative, set to 0 : does not work at all
– if negative, mirror to postive value : does not work well
– sample from non-central χ2 [6]: works well, no antithetics

(fast implementation in GSL (not inverting distribution function))
– moment matched log-normal[7] : works well, antithetics possible

V (t + ∆t) =
(
1 + (V (t)− 1)e−β∆

)
e−0.5Γ2(t)+Γ(t)Z

Γ2(t) = ln
(
1 +

ε2V (t)(1− e−2β∆t)
2β(1 + (V (t)− 1)e−β∆t)2

)
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PDE solution (I)

PDE for 1factor without stochastic volatility

∂V

∂t
= (Dx + Dy − r)V

Dx = (y − kx)
∂

∂x
+

1
2

(
mr(t)− (1−m)L

)2 ∂2

∂x2

Dy =
((

mr(t)− (1−m)L
)2

− 2ky

)
∂

∂y

• two dimensional PDE; y-dimension is convection only!

– ADI
– Craig Sneyd (splitting scheme)
– IMEX (see below)
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PDE solution (II)
IMEX-scheme [8]:

V (t+)− V (t)

∆t
=

µy

∆y
(V (y

+
, t)− V (t)) alt.

h µy

∆y

„
−

1

6
V (y

−−
, t) + V (y

−
, t)−

1

2
V (t)−

1

3
V (y

+
, t)

«i
+

1

2

 
1

2
σ

2
x
V (x+, t) + V (x−, t)− 2V (t)

∆x2
+ µx

V (x+, t)− V (x−, t)

2∆x
− rV (t)

!

+
1

2

 
1

2
σ

2
x
V (x+, t+) + V (x−, t+)− 2V (t+)

∆x2
+ µx

V (x+, t+)− V (x−, t+)

2∆x
− rV (t

+
)

!

• purely explicit in y

• use upwind scheme in y, not central differences : oscillations

• use third order upwind in y to increase accuracy to O(∆y3): no penalty in
solving system of linear equations since explicit

• can get accurate solution of swaption with 15 points in y
(number of necesarry gridpoints in y depends on m; for m ≈ 0 we can get away
with even less than 15)
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Multifactor
One multidimensional extension of the model is straight forward

dxi(t) =
(
yij(t)− kixi(t)

)
dt +

f∑
j=1

ηij(t)dWj(t) ; dWidWj = 0

dyij(t) =
( f∑

k=1

ηik(t)ηjk(t)− (ki + kj)yij(t)
)
dt

ηij(t, xi, yij) = σij(t)
(
m(t)r(t) + (1−m(t))L

)
σij(t) = lower triangular matrix

r(t) =
∑

i

xi(t) + f(0, t)

• f stochastic and f 3+f
2 total number of state variables

• analytic formula for P(t, ~x, ȳ)

• similar approximations for swaption
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Summary / Outlook

• What we have:

– class of shortrate models with flexible volatility function
∗ flexible smile and / or skew
∗ stochastic volatility with corresponding dynamics

– low dimensional Markow and analytical solution for ZCB:
⇒ relatively cheap in MC-simulation and PDE

– 1 factor version is capable of reproducing the smile for one underlying
per expiry nicely (e.g coterminal swaptions); even swaptions not used in
calibration process often still ok; further improvements by multi factor version
expected

• Future plans:

– improve swaption approximation in annuity measure for m 6= 0
– extensions and checks of multi factor model
– include jump diffusion
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