A multifactor, stochastic volatility HJM model in a low dimensional markov representation: theory overview and implementation details

Dr. Michael Dirkmann

A stochastic volatility extended Cheyette Model: theory overview and implementation details

Dr. Michael Dirkmann

YASM Yet Another Shortrate Model

Dr. Michael Dirkmann

Contents

- 1. Relationship between Shortrate Model and HJM
- 2. 1 factor Cheyette Model
- 3. Swaptions in the 1 factor Cheyette Model
- 4. 1 factor Stochastic Volatility Cheyette Model
- 5. Swaptions in the 1 factor Stochastic Volatility Cheyette Model
- 6. Calibration issues
- 7. Simulation issues
- 8. PDE issues
- 9. Multifactor SV Cheyette Modell

Introduction

We have the LMMs why bother with shortrate models anyway?

- looking for a slim alternative to LMM
- try to capture as many features as possible with only few state variables
- few state variables will be faster in MC simulation
- few state variables will provide chance for PDE solution

So give it a try...

HJM (I)

$$df(t,T) = \sigma_f(t,T) \left(\int_t^T \sigma_f(t,s) ds \right) dt + \sigma_f(t,T) dW(t)$$

setting

$$\sigma_f(t,T) = h(t)g(T)$$

and integrating yields

$$f(t,T) = f(0,t) + \frac{g(T)}{g(t)} \left(x(t) + y(t) \frac{1}{g(t)} \int_{t}^{T} g(s) ds \right)$$

with

$$dx(t) = \left(\frac{g'(t)}{g(t)}x(t) + y(t)\right)dt + g(t)h(t)dW(t)$$
$$dy(t) = \left(g^2(t)h^2(t) + 2\frac{g'(t)}{g(t)}y(t)\right)dt$$

HJM (II)

$$dx(t) = \left(\frac{g'(t)}{g(t)}x(t) + y(t)\right)dt + g(t)h(t)dW(t)$$
$$dy(t) = \left(g^2(t)h^2(t) + 2\frac{g'(t)}{g(t)}y(t)\right)dt$$

with

$$\frac{g'(t)}{g(t)} = -k(t)$$
$$g(t)h(t) = \eta(t, x(t), y(t))$$

yields

$$dx(t) = (y(t) - k(t)x(t))dt + \eta (t, x, (t), y(t)) dW(t)$$

$$dy(t) = (\eta^2 (t, x(t), y(t)) - 2k(t)y(t))dt$$

Cheyette 1f (I)

See e.g. [1], [2]

$$dx(t) = (y(t) - k(t)x(t))dt + \eta(t, x(t), y(t))dW(t)$$

$$dy(t) = (\eta^{2}(t, x(t), y(t)) - 2k(t)y(t))dt$$

$$r(t) = x(t) + f(0, t)$$

Zero Coupon Bond:

$$P(t,T;x(t),y(t)) = \frac{D(T)}{D(t)} \exp\left(-G(t,T)x(t) + \frac{1}{2}G^{2}(t,T)y(t)\right)$$
$$G(t,T) = \int_{t}^{T} e^{-\int_{t}^{u} k(s)ds} du = \frac{1}{k} \left(1 - e^{-k(T-t)}\right)$$

For any choice of $\eta(t, x(t), y(t))$! So, what is the best choice of $\eta(t, x(t), y(t))$?

Cheyette 1f (II)

Displaced diffusion (DD)

$$\eta(t,x) = (m r(x,t) + (1-m)L)\sigma(t)$$

$$\eta(t,x,y) = (m S_{nN}(x,y,t) + (1-m)L)\sigma(t)$$

Constant Elasticity of Variance (CEV)

$$\eta(t,x) = r(x,t)^{\alpha}\sigma(t) \quad ; \quad \eta(t,x) = S_{nN}(x,y,t)^{\alpha}\sigma(t)$$

DD with stochastic volatility (SV)

$$\eta(t,x) = (m r(t) + (1-m)L)\sqrt{V(t)}\sigma(t)$$
$$dV = \beta(1-V(t))dt + \sqrt{V(t)}\epsilon dW_V ; V(0) = 1$$

Cheyette 1f (III)

Displaced Diffusion: $\eta(t, x) = (m r(t) + (1 - m)L)\sigma(t)$ with m = 0

$$\eta(t,x) = (mr(t) + (1-m)L)\sigma(t) = L\sigma(t)$$

$$dx(t) = (y(t) - kx(t))dt + L\sigma(t)dW(t)$$

$$dy(t) = (L^2\sigma^2(t) - 2ky(t))dt$$

yields extended Vasicek model

$$y(t) = e^{-2kt}L^2 \int_0^t \sigma^2(s)e^{-2ks}ds$$
$$dx(t) = (y(t) - kx(t))dt + L\sigma(t)dW(t)$$

Cheyette 1f (IV)

Displaced Diffusion: $\eta(t, x) = (m r(t) + (1 - m)L)\sigma(t)$ with m = 1

$$\eta(x,t) = (mr(t) + (1-m)L)\sigma(t) = r(x,t)\sigma(t)$$

$$dx(t) = (y(t) - kx(t))dt + \eta(x,t)dW(t)$$

$$dy(t) = (\eta^2(x,t) - 2ky(t))dt = (x^2(t)\sigma^2(t) - 2ky(t))dt$$

we get a kind of lognormal model

$$dx(t) = (y(t) - kx(t))dt + r(x,t)\sigma(t)dW(t) dy(t) = (\eta^{2}(x,t) - 2ky(t))dt = (\sigma^{2}(t)x^{2}(t) - 2ky(t))dt$$

Intermediate Summary (I)

What do we have?

- shortrate model with only few state variables
- variable volatility specification (including stochastic volatility)
- analytic function for zero coupon bond: P(t, T, x(t), y(t))

What do we need?

- fast calculation of instruments to calibrate to (e.g. swaptions)
- simulation of process
- scheme for PDE solving

Cheyette 1f Swaptions (I)

Displaced Diffusion:

$$\eta(t,x) = \left(mr(t) + (1-m)L\right)\sigma(t)$$

Swaption in swap-measure (annuity measure) [3]: $S_{nN}(t) = \frac{P(t,t_n) - P(t,t_N)}{\sum_{1}^{N} \alpha_i P(t,t_i)}$ $dS_{nN} = \frac{\partial S_{nN}}{\partial x} dx = \frac{\partial S_{nN}}{\partial x} \Big(mr(t) + (1-m)L \Big) \sigma(t) dW$ $\approx \Big[\frac{\partial S_{nN}}{\partial x} \frac{(mr(t) + (1-m)L)}{(mS_{nN}(t) + (1-m)L)} \Big] \Big(mS_{nN} + (1-m)L \Big) \sigma(t) dW$ $dS_{nN} \approx (mS_{nN} + (1-m)L) \lambda(t) dW$

Displaced Diffusion (lognormal in \tilde{S}):

$$SWP = PV_{01}\mathsf{E}\left[(S-K)^{+}\right] = \frac{PV_{01}}{m}\mathsf{E}\left[(\tilde{S}-\tilde{K})^{+}\right] = \frac{PV_{01}}{m}\mathsf{BS}(\tilde{S},\tilde{K})$$

with $\tilde{S} = mS + (1-m)L$; $\tilde{K} = mK + (1-m)L$

Cheyette 1f Swaptions (II)

Comments on approximation [3]:

$$S_{nN}(t) = \frac{P(t,t_n) - P(t,t_N)}{\sum_{1}^{N} \alpha_i P(t,t_i)} \quad ; \quad P(t,T) = \frac{D(T)}{D(t)} \exp\left(-G(t,T)x + \frac{1}{2}G^2(t,T)y\right)$$

Errors in approximation

- freezing $\frac{\partial S}{\partial x} \approx \left[\frac{\partial S}{\partial x}\right]_{x=y=0}$ removes variance
- since $E\left[\frac{\partial S}{\partial x}\right] \neq E\left[\left[\frac{\partial S}{\partial x}\right]_{x=y=0}\right]$ expectation is biased

The above effects are small and partially offsetting. (Unfortunately true only for $m \approx 0$.)

• no drift correction for x(t) in annuity meassure \Rightarrow residual skew and biased expectation

Cheyette 1f Swaptions (III)

Cheyette 1f Swaptions (IV)

Cheyette 1f Swaptions (V)

Cheyette 1f stochastic volatility (SV)

SDE (see e.g. [2]):

$$dx(t) = (y(t) - kx(t))dt + \eta(x,t)\sqrt{V(t)}dW_x(t)$$

$$dy(t) = (\eta^2(x,t) - 2ky(t))dt$$

$$\eta(x,t) = (m(t)x(t) + (1 - m(t))L)\sigma(t)$$

$$dV(t) = \beta(1 - V(t))dt + \epsilon(t)\sqrt{V(t)}dW_V(t)$$

$$dW_xdW_V = 0$$

 Zero Coupon Bond: like in Cheyette <u>without</u> SV (Unspanned Stochastic Volatility) Zero Coupon Bond:

$$\begin{split} P(t,T;x,y) &= \frac{D(T)}{D(t)} \exp\left(-G(t,T)x(t) + \frac{1}{2}G^2(t,T)y(t)\right) \\ G(t,T) &= \frac{1}{k} \left(1 - e^{-k(T-t)}\right) \end{split}$$

Cheyette 1f SV Swaption (I)

Start with time constant displacement (m):

$$\eta(x,t) = (mr(t) + (1-m)L)\sigma(t)$$

$$dV(t) = \beta (1 - V(t))dt + \epsilon(t)\sqrt{V(t)}dW_V(t)$$

- change of measure into swap-measure (like in non-SV case)
- due to 0-correlation between dW_x and dW_V no change of drift in dV

Swaption in swap-measure (annuity measure) plus approximations:

$$dS_{nN} = \left(mS_{nN} + (1-m)L\right)\lambda(t)\sqrt{V(t)}dW$$
$$dV(t) = \beta \left(1 - V(t)\right)dt + \epsilon \sqrt{V(t)}dW_V(t)$$

• well known Heston SDE (+ Displaced Diffusion)

Cheyette 1f SV Swaption (II)

$$dS_{nN} = \left(mS_{nN} + (1-m)L\right)\lambda(t)\sqrt{V(t)}dW$$
$$dV(t) = \beta \left(1 - V(t)\right)dt + \epsilon(t)\sqrt{V(t)}dW_V(t)$$

$$\mathcal{SWP} = PV_{01}\mathsf{E}\left[(S-K)^{+}\right] = \frac{PV_{01}}{m}\mathsf{E}\left[(\tilde{S}-\tilde{K})^{+}\right] = \frac{PV_{01}}{m}\mathsf{Heston}(\tilde{S},\tilde{K})$$

with $\tilde{S} = mS + (1-m)L$; $\tilde{K} = mK + (1-m)L$

The Heston part can be solved by

- fundamental transform (see below)
- volatility expansion

Cheyette 1f SV Swaption (III)

$$\begin{aligned} \mathsf{Heston}(\tilde{S}, \tilde{K}) &= \tilde{S}(0) + \frac{\tilde{K}}{2\pi} \Re \left[\int_{ik_i - \infty}^{ik_i + \infty} \frac{e^{-i\omega \ln \frac{\tilde{S}(0)}{\tilde{K}}}}{\omega^2 - i\omega} e^{a(0,\omega) + b(0,\omega)} d\omega \right] \\ & k_i = 0.5 \\ \equiv \tilde{S}(0) + \frac{\tilde{K}}{\pi} \int_0^\infty \frac{\sqrt{\frac{\tilde{S}(0)}{\tilde{K}}} \cos\left(-k \ln \frac{\tilde{S}(0)}{\tilde{K}}\right)}{k^2 + 0.25} e^{a(0,k+0.5i) + b(0,k+0.5i)} dk \\ & \frac{da}{dt} &= -\beta b \quad ; \quad a(T,\omega) = 0 \\ & \frac{db}{dt} &= -\beta b - \frac{1}{2} \epsilon^2(t) b^2 + \frac{1}{2} \lambda^2(t) m^2 k^2 \quad ; \quad b(T,\omega) = 0 \end{aligned}$$

Riccati ordinary differential equation has

- analytical solution for ϵ and λ constant,
- piecewise analytical solution for ϵ and λ piecewise constant and
- numerical solution for $\epsilon(t)$ and $\lambda(t)$ (which is slower)

Unfortunately $\lambda(t)$ is **not** piecewise constant; (whereas $\sigma(t)$ is)

Cheyette 1f SV Swaption (IV)

- can solve model with $\lambda(t)$ and $\epsilon(t)$ and m
- cannot use lognormal property of Displaced Diffusion anymore when m becomes m(t)

$$dS_{nN} = (m(t)S_{nN} + (1 - m(t))L)\lambda(t)\sqrt{V(t)}dW_S$$

$$dV(t) = \beta(1 - V(t))dt + \epsilon(t)\sqrt{V(t)}dW_V$$

• find time averaged variables to approximate dynamics: \bar{m} for solvebility ; $\bar{\lambda}$ and $\bar{\epsilon}$ for speed up

$$d\bar{S}_{nN} = \left(\bar{m}\bar{S}_{nN} + (1-\bar{m})L\right)\bar{\lambda}\sqrt{V(t)}dW_{\bar{S}}$$
$$d\bar{V}(t) = \beta\left(1-\bar{V}(t)\right)dt + \bar{\epsilon}\sqrt{\bar{V}(t)}dW_{\bar{V}}$$

Cheyette 1f SV Swaption (V)

Average volatility of variance $\overline{\epsilon}$ (V.Piterbarg[5]):

Equate variance of realized volatility

$$E\left[\left(\int_0^T \lambda^2(t)\bar{V}(t)dt\right)^2\right] = E\left[\left(\int_0^T \lambda^2(t)V(t)dt\right)^2\right]$$

yielding

$$\bar{\epsilon}^2 = \frac{\int_0^T \epsilon^2(t) w(t) dt}{\int_0^T w(t) dt}$$

with

$$w(t) = \int_t^T \int_s^T \lambda^2(u) \lambda^2(s) e^{\beta(u-s)} e^{2\beta(s-t)} du ds$$

Cheyette 1f SV Swaption (VI)

L = 4% k = 2.4% m = 0.2 $\sigma = 18.5\%$ $\epsilon(0) = 80\%, \epsilon(10) = 20\%$

Cheyette 1f SV Swaption (VII)

Effective skew parameter \bar{m} (V.Piterbarg[5]):

 $dS_{nN} = \eta \left(S(t), t \right) \lambda(t) \sqrt{V(t)} dW_S \text{ with } \eta \left(S(t), t \right) = m(t) S_{nN} + (1 - m(t)) L$ $dV(t) = \beta \left(1 - V(t) \right) dt + \epsilon(t) \sqrt{V(t)} dW_V$

V.P. shows that

$$\bar{\eta}^{2}(S(t)) = \frac{\int_{0}^{T} w(t)\eta(S(t), t)\lambda^{2}(t)dt}{\int_{0}^{T} w(t)\lambda^{2}(t)dt} \quad \text{with} \quad w(t) = E\Big[V(t)\big(S(t) - S(0)\big)^{2}\Big]$$

minimizes the difference of the second and third moment between the time averaged and timedependent SDE.

For the given $\eta\left(S(t),t\right)$ this yields

$$\bar{m} = \frac{\int_0^T m(t)w(t)\lambda^2(t)dt}{\int_0^T w(t)\lambda^2(t)dt} \quad \text{with} \quad w(t) = \int_0^t \lambda^2(s)ds + \bar{\epsilon}^2 e^{-\beta t} \int_0^t \frac{\lambda^2(s)}{2\beta} \left(e^{\beta s} - e^{-\beta s}\right)ds$$

Cheyette 1f SV Swaption (VIII)

L = 4% k = 2.4% m(0) = 0.8, m(15) = 0.3 $\sigma = 18.5\%$ $\epsilon = 60\%$

Cheyette 1f SV Swaption (IX)

Effective volatility $\overline{\lambda}$ (V.Piterbarg[5]):

step 1: Black-Scholes ATM-Swaption formula as function of variance

$$g(x) = \frac{S_{nN}}{\bar{m}} \left(2N(\frac{1}{2}\bar{m}\sqrt{x}) - 1 \right)$$

is approximated with

$$\tilde{g}(x) = a + be^{-cx}.$$

by setting

$$g(\xi) = \tilde{g}(\xi)$$
; $g'(\xi) = \tilde{g}'(\xi)$ and $g''(\xi) = \tilde{g}''(\xi)$

step 2: Equate expectations for time dependent and time averaged λ

$$E\Big[\tilde{g}\Big(\int_0^T \lambda^2(t)V(t)\Big)\Big] = E\Big[\tilde{g}\Big(\bar{\lambda}^2 \int_0^T V(t)\Big)\Big]$$
$$a + bE\Big[e^{-c\int_0^T \lambda^2(t)V(t)dt}\Big] = a + bE\Big[e^{-c\bar{\lambda}^2\int_0^T V(t)dt}\Big]$$

Cheyette 1f SV Swaption (X)

still step 2:

$$a + bE\left[e^{-c\int_0^T \lambda^2(t)V(t)dt}\right] = a + bE\left[e^{-c\bar{\lambda}^2\int_0^T V(t)dt}\right]$$

$$E\left[e^{-c\int_0^T \lambda^2(t)V(t)dt}\right] = E\left[e^{-c\bar{\lambda}^2\int_0^T V(t)dt}\right]$$

$$e^{A(0,T)+B(0,T)} = e^{\bar{A}(0,T)+\bar{B}(0,T)}$$

a() and a() follow Riccati ODE. For $\bar{a}()$ and $\bar{a}()$ anayltic solutions exist.

- time dependent part: once solve for a() and b() numerically
- time independent part: solve for $\overline{\lambda}$ numerically (cheap since analytical solutions to $\overline{a}()$ and $\overline{b}()$ exist

Cheyette 1f SV Swaption (XI)

Some empirical observations for swaptions in the Euro market in June:

- the skew parameter m tends to be well below 1 and not strongly varying
- the smile parameter ϵ is constant around 50% for larger t, a bit larger (60%) at small t (t < 2years)
- the volatiliy $\sigma(t)$ is about 18% and not strongly fluctuating

Cheyette 1f SV Swaption (XIIa)

L = 4% k = 2.4% $m \approx 0.2[0.1]$ $\sigma \approx 18\%$ $\epsilon = 60\%[50\%]$

Cheyette 1f SV Swaption (XIIb)

L = 4% k = 2.4% $m \approx 0.2[0.1]$ $\sigma \approx 18\%$ $\epsilon = 60\%[50\%]$

Intermediate Summary (II)

• by

- transformation into swap measure
- freezing of $\frac{dS_{nN}}{dx}\eta(r) \approx \left[\frac{dS_{nN}}{dx}\frac{\eta(r)}{\eta(S_{nN})}\right]_{\substack{x=y=0}} \eta(S_{nN})$
- using fact that displaced diffusion leads to lognormal distribution in substitute variable
- time averaging of $\sigma(t),\,\lambda(t)$ and $\epsilon(t)$

we get more (m small) or less (m large) accurate numerical solution

- can (largely) remove residual skew of approximation by correting for deviation between approximation and simulation <u>once</u> (denoted by tuned simulation)
- hence we are prepared for calibration of the model

Calibration to Swaptions

- minimize sum of weighted squared relative deviations of model price from market price
 - **global:** for all model parameters at once : slow and unstable **stepwise:** assume knowledge of time independent parameters k and β ; fit time dependent parameters m(t), $\sigma(t)$ and $\epsilon(t)$ for subsequent swaption expiries
 - iterative: optimize time independent parameters combined with a stepwise calibration for each valuation of the cost function
- depending of the number of factors, time intervals and market quotes this takes from fractions of a second to several minutes
- for very accurate calibration one intermediate simulation step is helpful (removing residual skew in swaption price approximation for m > 0)

Simulation of Variance Process (CIR)

 $dV(t) = \beta (1 - V(t)) dt + \epsilon \sqrt{V(t)} dW_V(t) \quad V(0) = 1$ $V(t + \Delta t) = V(t) + \beta (1 - V(t)) \Delta t + \epsilon \sqrt{V(t)} \sqrt{\Delta t} Z$

- process itself <u>cannot</u> yield V(t) < 0
- for large β and / or large ϵ : Euler discretization <u>can</u> yield negative V(t)
 - if negative, set to 0 : does not work at all
 - if negative, mirror to postive value : does not work well
 - sample from non-central χ^2 [6]: works well, no antithetics (fast implementation in GSL (not inverting distribution function))
 - moment matched log-normal[7] : works well, antithetics possible

$$V(t + \Delta t) = \left(1 + (V(t) - 1)e^{-\beta\Delta}\right)e^{-0.5\Gamma^{2}(t) + \Gamma(t)Z}$$

$$\Gamma^{2}(t) = \ln\left(1 + \frac{\epsilon^{2}V(t)(1 - e^{-2\beta\Delta t})}{2\beta(1 + (V(t) - 1)e^{-\beta\Delta t})^{2}}\right)$$

PDE solution (I)

PDE for 1 factor without stochastic volatility

$$\begin{aligned} \frac{\partial V}{\partial t} &= (D_x + D_y - r)V\\ D_x &= (y - kx)\frac{\partial}{\partial x} + \frac{1}{2}\Big(mr(t) - (1 - m)L\Big)^2 \frac{\partial^2}{\partial x^2}\\ D_y &= \Big(\Big(mr(t) - (1 - m)L\Big)^2 - 2ky\Big)\frac{\partial}{\partial y}\end{aligned}$$

- two dimensional PDE; y-dimension is convection only!
 - ADI
 - Craig Sneyd (splitting scheme)
 - IMEX (see below)

PDE solution (II)

IMEX-scheme [8]:

$$\frac{V(t^{+}) - V(t)}{\Delta t} = \frac{\mu y}{\Delta y} (V(y^{+}, t) - V(t)) \quad \text{alt.} \left[\frac{\mu y}{\Delta y} \left(-\frac{1}{6} V(y^{--}, t) + V(y^{-}, t) - \frac{1}{2} V(t) - \frac{1}{3} V(y^{+}, t) \right) \right] \\
+ \frac{1}{2} \left(\frac{1}{2} \sigma_x^2 \frac{V(x^{+}, t) + V(x^{-}, t) - 2V(t)}{\Delta x^2} + \mu_x \frac{V(x^{+}, t) - V(x^{-}, t)}{2\Delta x} - rV(t) \right) \\
+ \frac{1}{2} \left(\frac{1}{2} \sigma_x^2 \frac{V(x^{+}, t^{+}) + V(x^{-}, t^{+}) - 2V(t^{+})}{\Delta x^2} + \mu_x \frac{V(x^{+}, t^{+}) - V(x^{-}, t^{+})}{2\Delta x} - rV(t^{+}) \right)$$

- purely explicit in y
- use upwind scheme in y, not central differences : oscillations
- use third order upwind in y to increase accuracy to $O(\Delta y^3)$: no penalty in solving system of linear equations since explicit
- can get accurate solution of swaption with 15 points in y(number of necesarry gridpoints in y depends on m; for $m \approx 0$ we can get away with even less than 15)

Multifactor

One multidimensional extension of the model is straight forward

$$dx_i(t) = (y_{ij}(t) - k_i x_i(t)) dt + \sum_{j=1}^f \eta_{ij}(t) dW_j(t) ; dW_i dW_j = 0$$

$$dy_{ij}(t) = \left(\sum_{k=1}^{f} \eta_{ik}(t)\eta_{jk}(t) - (k_i + k_j)y_{ij}(t)\right)dt$$

$$\eta_{ij}(t, x_i, y_{ij}) = \sigma_{ij}(t)\left(m(t)r(t) + (1 - m(t))L\right)$$

$$\sigma_{ij}(t) = \text{lower triangular matrix}$$

$$r(t) = \sum_{i} x_i(t) + f(0,t)$$

- f stochastic and $f\frac{3+f}{2}$ total number of state variables
- analytic formula for P(t, \vec{x} , \bar{y})
- similar approximations for swaption

Summary / Outlook

- What we have:
 - class of shortrate models with flexible volatility function
 - * flexible smile and / or skew
 - * stochastic volatility with corresponding dynamics
 - low dimensional Markow and analytical solution for ZCB: \Rightarrow relatively cheap in MC-simulation and PDE
 - 1 factor version is capable of reproducing the smile for one underlying per expiry nicely (e.g coterminal swaptions); even swaptions not used in calibration process often still ok; further improvements by multi factor version expected
- Future plans:
 - improve swaption approximation in annuity measure for $m \neq 0$
 - extensions and checks of multi factor model
 - include jump diffusion

References

- [1] Markov Representation of the HJM Model; O. Cheyette; Working paper: Barra
- [2] Volatile Volatilities; L. Andersen, J. Andreasen; Risk December 2002
- [3] Pricing Swaptions and Coupon Bond Options in Affine TS Models D. Schrager, A. Pelsser
- [4] Option Valuation under Stochastic Volatility; A. Lewis
- [5] Time to smile and Stochastic Volatility Model with Timedependent Skew;V. Piterbarg; Risk May 2005
- [6] Exact Simulation of SV and other Affine Jump Diffusion Processes M. Broadie, Ö. Kaya
- [7] Extended Libor Market Models with Stochastic Volatility L. Andersen, R. Brotherton-Ratcliffe

[8] Numerical Solution of Time-Dep. Advection-Diffusion-Reaction Eqs. W. Hundsdorfer, J. Verwer